SOUTHWEST RESEARCH INSTITUTE®

Urban Concept Vehicle

Shell Eco-Marathon

Southwest Research Institute® (SwRI®) is a regular partner with Shell Eco-marathon. Hosted by Shell, this annual event gives a demonstration platform to STEM students who want to challenge their skills by creating an energy-efficient vehicle and testing it against other teams, for the sole purpose of aiding STEM development.

In the spirit of innovation, SwRI enabled the Shell Urban Concept Vehicle to be autonomously navigable, promoting the event and its advancements toward the future of transportation.

Urban Concept Vehicle Specifications

Vehicle Type: 2-door, 2-passenger, rear-wheel drive (RWD) microcar

Body Material: Twill-woven and unidirectional carbon fiber prepreg in epoxy resin matrix; resin-impregnated paper honeycomb core

Build: Compact, easily maneuverable in urban environments

Battery: Rechargeable; full charge in less than 2.5 hours

Design: Sustainability based on resource efficiency

	Drivetrain	Performance	Electrical System	Dimensions	Suspension
	Throttle Drive-by-wire electric	Max. Speed, FWD 40 kph	Drive Train Battery Module 48 V, 40 Ah, LiFePO4	Wheelbase 1796 mm	Wheels/Tires Custom, 16 x 33, three-piece center lock wheels, hybrid ceramic bearings
	Drive Modes Normal, Eco 1, Eco 2	Max. Speed, REV 10 kph	Electronics Battery Module 12.8 V, 138 Ah, LiFePO4	Track, FR/RR 1150 mm	Brakes 4-wheel, dual-circuit, hydraulic disk, 225 mm rotors
	Motor Axial flux PMAC	Acceleration 0–40 kph 12 s	Computing Nvidia AGX 30 W power, 512 GPU cores	Weight 235 kg (not including ACS sensors)	Steering Rack-and-pinion, 2.125 turns lock-to-lock
	Transmission 6:1 belt reduction, direct drive (left wheel)	Energy Usage 60 km/kWh (est.)	Power Distribution Infinitybox Powercell PDM system	Length 2850 mm	Turning Circle Radius 4.3 m curb-to-curb
	Max. Power Output 4000 W @ 2200 rpm		Wheel Speed Sensor Gear position sensor; 25 pulses per wheel revolution; mounted on each wheel	Width (max. w/o mirrors) 1260 mm	
	Max. Horsepower 5.36 hp @ 2200 rpm		Steering Actuator DC Electronics EPAS Ultra, modified	Height 1224 mm	
	Max. Torque 80 Nm @ 0-2000 rpm @ axle		Engine Control MotoHawk ECM-5554-112-0904 3 CAN 2.0B 1 RS 485	Min. Ground Clearance 100 mm	

We welcome your inquiries. For more information, please contact:

David Anthony, PhD Sr. Research Engineer 210.522.6030 david.anthony@swri.org

SOUTHWEST RESEARCH INSTITUTE

Southwest Research Institute® is a premier independent, nonprofit research and development organization. With eleven technical divisions, we offer multidisciplinary services leveraging advanced science and applied technologies. Since 1947, we have provided solutions for some of the world's most challenging scientific and engineering problems.

210.522.6065 its@swri.org

An Equal Employment Opportunity/Affirmative Action Employer Race/Color/Religion/Sex/Sexual Orientation/Gender Identity/National Origin/Disabled/Veteran Committed to Diversity in the Workplace

©2023 Southwest Research Institute.
All rights reserved.
Designed & printed by SwRI MPS 10-0423 JCN 269497 bl