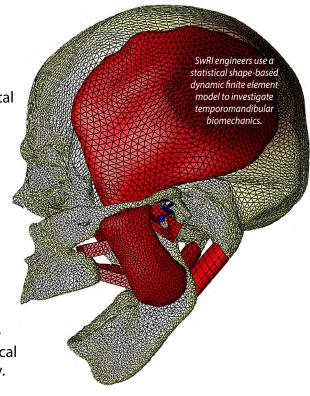
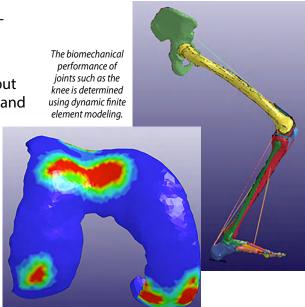


Computational Musculoskeletal Modeling

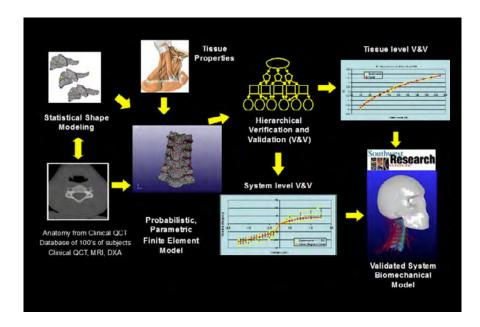

Southwest Research Institute® (SwRI®) offers expertise in advanced computational modeling to understand the mechanics of complex musculoskeletal conditions. Engineers in the Musculoskeletal Biomechanics Section have more than 35 years of experience in developing and applying advanced computational and experimental methods, including:


- Statistical shape modeling-based finite element analysis
- Advanced computational constitutive model development
- Risk of musculoskeletal disease initiation and progression
- Musculoskeletal injury risk prediction
- Clinical bone fracture risk assessment

Probabilistic Mechanics and Reliability Methods

SwRI's musculoskeletal biomechanics engineers use advanced probabilistic mechanics and reliability methods to address how the inherent variability and uncertainty associated with human biological systems affect predictions of system performance and functionality. These methods include:

- Imaging-based methods of defining subject-specific or specimenspecific finite element models
- Parametric and probabilistic finite element modeling methods to investigate the effect of variation and/or uncertainty in model input parameter definition (i.e., geometry, material properties, loading, and boundary conditions) on predicted outcome
- Experimental verification and validation methods at multiplelength scales ranging from ultra- and microstructural characterization to continuum-level biological material behavior to musculoskeletal performance at the whole-body level
- Implementation and development of statistical shape and density/trait modeling methods that allow sophisticated analyses of variation within a population
- Description of variability in bone shape and traits in both crosssectional and longitudinal studies



Applications

SwRl's biomechanics engineers develop and apply advanced computational and unique experimental techniques to address a variety of musculoskeletal biomechanicsrelated problems, including:

- Osteoporosis
- Osteoarthritis
- Bone fracture risk
- Musculoskeletal injury risk
- Musculoskeletal implant failure risk

SwRI engineers use advanced probabilistic mechanics and reliability methods to address how the inherent variability and uncertainty associated with biological systems affect predictions of biomechanical performance and functionality. In one application, the probability of injury to the cervical spine (neck) of naval aviators caused by high acceleration maneuvers is being investigated.

We welcome your inquiries. For more information, please contact:

Daniel P. Nicolella, Ph.D. Institute Engineer & Manager Musculoskeletal Biomechanics Section 210.522.3222 daniel.nicolella@swri.org Materials Engineering Department Mechanical Engineering Division

biomechanics.swri.org

SOUTHWEST RESEARCH INSTITUTE

Southwest Research Institute* is a premier independent, nonprofit research and development organization. With eleven technical divisions, we offer multidisciplinary services leveraging advanced science and applied technologies. Since 1947, we have provided solutions for some of the world's most challenging scientific and engineering problems.

An Equal Employment Opportunity/Affirmative Action Employer Race/Color/Religion/Sex/Sexual Orientation/Gender Identity/National Origin/Disabled/Veteran Committed to Diversity in the Workplace 210.522.2122 ask@swri.org

©2023 Southwest Research Institute.
All rights reserved.