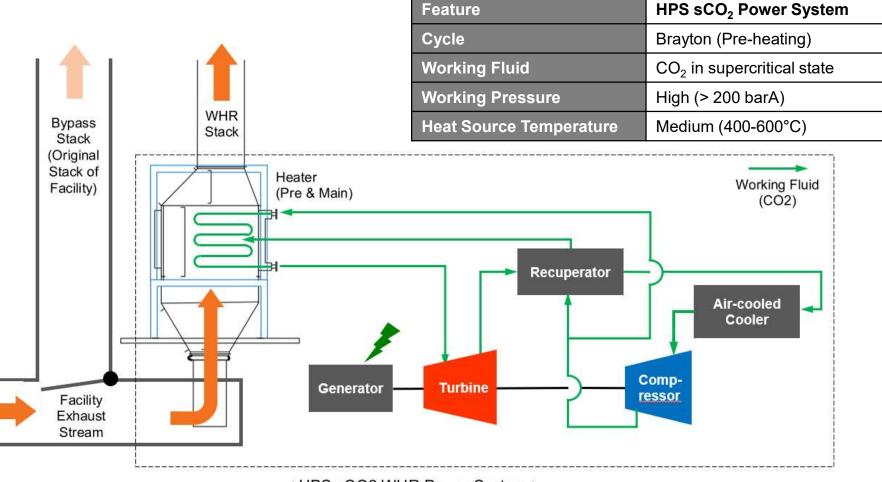


IPER Technology Workshop sCO₂ Waste Heat Recovery for **Industrial Applications**

Lyneisa Davidson Hanwha Power Systems Americas January 30-31, 2024, San Antonio, Texas

SCO₂ is excellent for mid and high temperature applications providing high performance, compact size, zero emissions, and no water required.

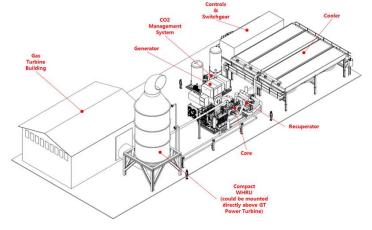
Classification		Heat Source	Applications
	Low Temperature (<400°C)	Biomass; Geothermal; various industrial	 Low levels of cycle efficiency ORC / Geothermal Low temperature industrial processes
HPS's Focus	Mid Temperature (450-600°C)	Gas Turbine Engine WHR ¹⁾ ; Recips; Cement production	 Pipeline : Gas Turbine + sCO₂ Combined Solution Industrial facilities Ship Propulsion : COGES⁴)
		Steel Mills; Incinerators; SMR ²⁾	 4th Gen Nuclear Power Gen System (sCO₂ preferred due to the Steam/Sodium contact risks) SFR (Sodium-cooled Fast Reactor)
	High Temperature (above 600°C)		 4th Gen Nuclear Power Generation System (alternative to Steam Turbine for higher temps) High Temp Gas Reactor Molten Salt Reactor
		CSP ³⁾	Renewable Energy : Power Block for CSPDesert Area CSP alternative to Steam Turbine


1) WHR : Waste Heat Recovery; 2) SMR : Small Modular Reactor; 3) CSP : Concentrated Solar Power; 4) COGES : Combined Gas turbine Electric and Steam

2. Mid Temperature – Gas Turbine WHR

HPS's supercritical CO₂ (sCO₂) WHR power system recovers exhaust heat directly to the working fluid of CO₂ without requiring any heat transfer fluid. The CO₂ fluid is contained in a closed-loop system with no releases to the atmosphere. This system creates 100% emission free energy.

< HPS sCO2 WHR Power System >

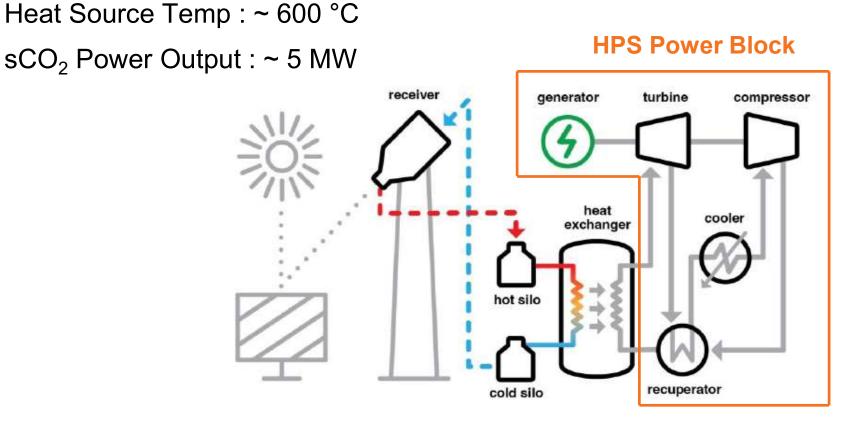

3. Mid Temperature – Gas Turbine WHR

Initial Considerations

- More than 65% of GT operating rate needed for viable economics
- Generally, GTs should be rated larger than 10,000 hp
- Preferred: Titan 130/250 Grade Power (17 25 MW)
- Space Available Near GT and Exhaust Stack
- General assumptions would be made for ambient site conditions, operating limitations, GT power rates, etc. in determining estimate WHR output and sizing

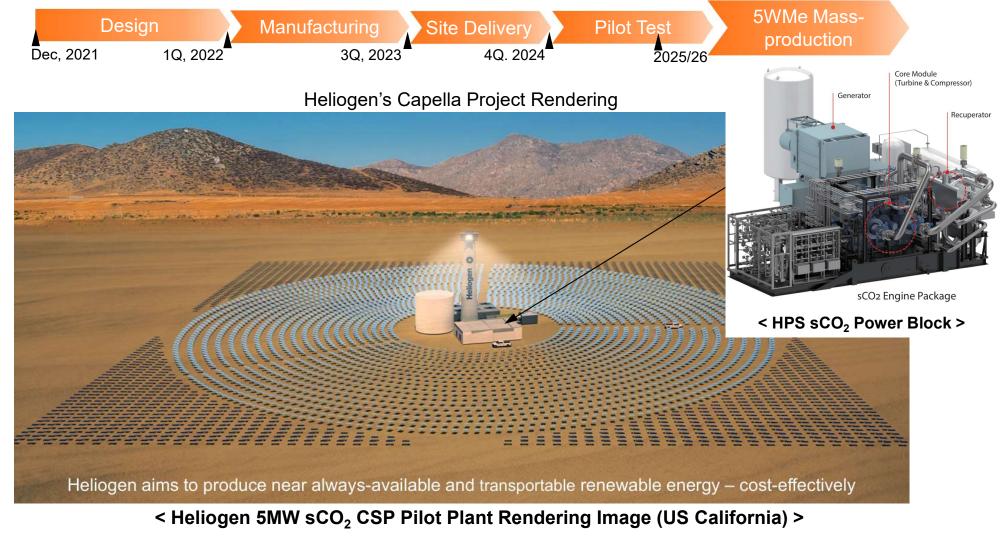
Estimated sCO₂ System Output

- 1) Energy: 31,536 47,304 MWh per year
- 2) Capacity: 4 6 MW
- 3) sCO2 Unit Efficiency: 22 30%



4. High Temperature – Concentrated Solar Power

HPS provides skid-based sCO₂ power block with minimized footprint and high efficiency.


HelioPower[™] Process

Source : Heliogen Presentation – 2023 ASME Turbo Expo Commercial Systems Panel

5. High Temperature – Concentrated Solar Power

HPS executed a contract with Heliogen for the world's first 5MW sCO₂ (Dec 2021)

- Based on the successful outcome of DOE sCO₂ project, Heliogen released PO for supply of sCO₂ Power Block.

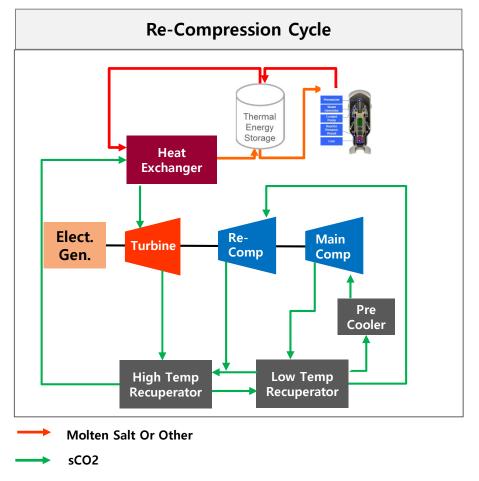
Confidential

1) Image Source : Heliogen's company website, "Earnings Presentation, March 28, 2022" (Mojave, California)

Copyright © 2024 Hanwha Power Systems. All Rights Reserved.

ID:HAPS_20230376/Name:Lyneisa Davidson/Group:HPSA법인/Print time:2024-01-30 01:06

6. High Temperature – SMR/MMR



Confidential

| 7

4th Gen Nuclear Power Generation System – Small/Micro Modular Reactor

- Alternative to Steam Turbine for higher temp (700 800°C)
- sCO₂ preferred due to the Steam/Sodium contact risks
- sCO₂ power output can be optimized by flow rate and heat source temperature

Thank you!

Lyneisa Davidson

Project Manager – Business Development

Hanwha Power Systems Americas

I.davidson@hanwha.com

346-400-3657