Industrial Heat Pump Technology Overview and Development Needs

SOUTHWEST RESEARCH INSTITUTE®

IPER 2024 Michael Marshall

ADVANCED SCIENCE. APPLIED TECHNOLOGY.

swri.org

1

Taking IHPs from hot water to steam

Hot Water

- **Numerous worldwide installations of industrial heat** pumps for hot water supply (<100°C).
- Simultaneous process cooling can also be achieved.

- Process heat from 100-200°C makes up 20% of all industrial process heating demand.
- Steam generation is ripe for industrial heat pump innovation, an area served by natural gas boilers currently.

Steam requires high temperature lifts, high temperature sources

- Assume a heat sink of steam at 3 bar (130°C saturation temperature).
- **Typical achievable efficiencies** for IHPs are 40-55% of Carnot.
- To maximize efficiency, utilize process waste heat, not ambient source.

The optimal refrigerant is application specific

- The higher the critical temperature of the refrigerant, the higher steam pressure that can be produced with a competitive COP.
- Numerous considerations exist include flammability, toxicity, local regulations, and material compatibility.

CO² Heat Pumps

Typical $CO₂$ Heat Pump Cycle

- Recuperated transcritical $CO₂$ cycles provide an efficient alternative to vapor compression cycles
- 60 MW $CO₂$ heat pump installed by MAN at Esbjerg to replace fossil boiler for district heating
- **CO2** heat pumps are also being developed for ETES
- **EX Currently use isenthalpic throttle to avoid** liquid in turbine – potential to develop multiphase expander for performance improvement

Centrifugal and screw compressors are viable options

- Key to performance of a high lift, vapor-compression cycle is a multi-stage compressor with economizer flow injected at intermediate pressure.
- **Screw compressors can excel for** high temperature lift requirements with two-stage units having gone up to 9 MW drivers.
- **Example Centrifugal compressors present** higher achievable isentropic efficiency and can be used for the highest capacity applications.

Wennemar, Jurgen (2009).

Compressor sealing and bearing design

- **Dry gas and oil seals are viable options,** with separation technologies a major factor in choosing between them.
- **Magnetic bearings have become adopted** from numerous OEMs for centrifugal chillers.
	- Advantages: Hermetically sealed, oil-free designs.
	- Limitations: Less mature for large capacity systems, power outage risks that can disrupt the process.

Johnson Controls, York Mag Bearing Compressor

Heat Exchangers

- Plate heat exchangers present high performance with low approach temperatures $(\sim2^{\circ}C)$.
- An industrial heat pump condenser for steam generation presents unique design challenges:
	- Refrigerant being condensed.
	- Water/steam being evaporated.
- **Semi-welded designs or custom gaskets can** be required based on refrigerant.
- Diffusion bonded and shell and tube heat exchangers are also options.

Alfa Laval, AlfaVap Plate Heat Exchanger

Process integration factors

- **Required steam conditions** may necessitate additional steam compression equipment.
- **Evaporator requires** customization dependent on waste heat source.
- **Compared to a steam boiler, a** greater number of variables exist during operation and startup.

Use case: Dairy pasteurization facility

- **Ultra-high temperature (UHT)** pasteurization involves exposing dairy milk to temperatures of 138°C. The process heat comes in the form of steam.
- Existing infrastructure at a San Antonio dairy plant includes natural gas steam boilers.
- \blacksquare NH₃ heat pumps are used throughout the plant for refrigeration.

Air-cooled condenser $(NH₃$ heat pump)

Steam distribution

Use Case: IHP Architecture

 \blacksquare NH₃ refrigeration heat source makes steam generating IHP possible in a vapor-compression cycle architecture.

Sink temp – steam generation

Source temp $- NH_3$ heat pump

Source temp - ambient

Use Case: Thermodynamic cycle perspective

Use Case: Technoeconomic questions

- \blacksquare What level of CO_2 emissions reduction can be achieved?
	- What is the carbon intensity of the power source?
- What payback period can be achieved?

– How do electricity costs compare with natural gas costs?

Use Case: Carbon intensity of the power source

■ Over time, increased retrofit from coal to natural gas fired units and increased renewable penetration decreases the carbon intensity of grid power generation.

 $Flexible$ PathSM Reductions

CO₂ Historical

--- CO, Forecast

NOx Historical

--- NOx Forecast

SO₂ Historical

--- SO₂ Forecast

Use Case: Significant CO₂ emissions reduction possible

- **Natural gas boiler assumptions:**
	- Thermal efficiency: 80%
	- Energy density: 1037 btu/ft³
	- $-$ Emissions coeff.: .0549 kg CO $_2$ /ft 3
- **Industrial heat pump assumptions:**
	- COP: 2.91 for equivalent steam thermal output.
	- \circ CO₂ intensity year-to-year from CPS, San Antonio utility.
- 85% emissions reduction by 2035.

Use Case: Economic factors

CPS industrial user rates: – \$.049/kWh *electric*

3.60

- \$4.15/1000 ft³ *gas*
- **Higher variability in natural gas prices** compared to electricity.

Use Case: Outcomes

- **Energy savings of 11% for the equivalent steam thermal output from the IHP.**
- Replacement of existing steam boiler would be 10+ year payback period.
- **Use of IHP for new installation can have attractive payback period compared** to natural gas boiler, dependent on unit cost.

swri.org

Conclusions

- Innovation with industrial heat pumps can open up market possibilities for steam generation.
- Current compression technology is feasible for high temperature lift requirements, but more development is needed.
- **Performance is paramount to making an economic case for steam** generating IHP.
	- High critical temperature refrigerant for latent heat transfer.
	- Energy efficiency improvements for the facility, not just process heat.
	- Condensing turbines are a future area for development.
- **Decarbonized power sources drive emissions reductions.**

swri.org

18