

Decarbonizing America's Industrial Sector

Paul Majsztrik, PhD: *Program Manager*Industrial Efficiency and Decarbonization Office
IPER
January 30, 2024

Building a Net-zero, Clean Energy Future

The U.S. industrial sector (manufacturing, agriculture, mining, and construction) accounts for:

33% of the nation's primary energy use

30% of CO₂ emissions

Anticipated industrial sector energy demand growth of 30% by 2050 may result in a:

17% CO₂ emissions increase*

35%
Transportation

19% Residential

16% Commercial

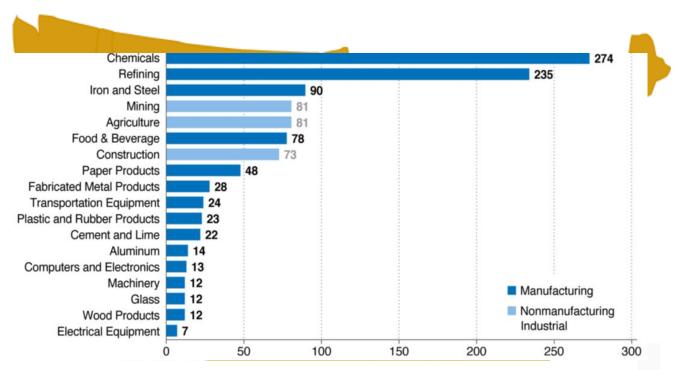
> Energy-Related CO₂ Emissions By Sector

^{*}EIA, Annual Energy Outlook 2021 with Projections to 2050.

Decarbonizing Industry is an Opportunity for America's Economy

U.S. manufacturing subsector...

CONTRIBUTES


\$2.79 trillion to the U.S. Economy

GENERATES

12% of U.S. GDP

SUPPORTS

11.2 million jobs

We need to work across all the industrial subsectors to decrease overall emissions

U.S. Census Bureau <u>Annual Survey of Manufactures</u> & <u>U.S.</u> <u>Bureau of Economic Analysis</u> data for 2021

While working to

DECREASE

CO₂ emissions

New Technologies Required to Meet Net-Zero Goals

RD&D Helps Solve Economic, Technical, & Sustainability Barriers

Risk to Industry's Bottom Line

Investment scale → In the range of

\$0.7 - \$1.1T

just for 8 industrial sector of focus in the IRA:

Source: DOE Pathways to Commercial Liftoff; Industrial Decarbonization

Estimated that

60% of heavy industry emission reductions

by 2050 will come from technologies that are not currently market ready (IEA, 2022)

Targeted investments in <u>RD&D</u> are required for U.S. industry to overcome these barriers

Chemicals

Refining

Iron & Steel

Food & Beverage

Cement

Pulp & Paper

Aluminum

Industrial Efficiency and Decarbonization Office (IEDO)

Vision: An efficient and competitive industrial sector with net-zero greenhouse gas emissions by 2050.

Mission: IEDO leads development and accelerates adoption of new and emerging technologies that are sustainable, increase efficiency, and eliminate industrial GHG emissions

\$266.5Million FY23 Budget

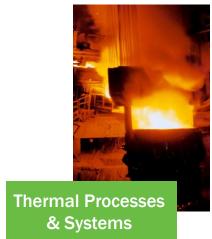
IEDO RD&D Programs

Energy- & Emission-Intensive Industries (EEII)

IRON & STEEL 1,469 TBtu 100 MMT CO₂e

CHEMICALS (including production of lowcarbon fuels) 4,842 Tbtu 332 MMT CO₂e

FOOD & BEVERAGE 1.935 TBtu 96 MMT CO₂e



FOREST PRODUCTS CEMENT & CONCRETE 2,883 TBtu 80 MMT CO₂e

367 TBtu 66 MMT CO₂e

Cross-Sector Technologies

Emerging Efficiency

IEDO's RD&D Approach to Industrial Decarbonization

Cross-Sector

- Process Electrification
 - Electrified Processes for Industry without Carbon (EPIXC) Institute EPIXC (\$70M/5yrs)
- Low-carbon Industrial Thermal Systems
 - Industrial Heat Shot
 - Heat pumps, low carbon fuels, induction heating, etc
 - Cogeneration of Heat & Power
 - Drying, separations, waste heat recovery
- Water-Energy Nexus
 - National Alliance for Water Innovation (NAWI)
- Carbon Capture Tech & Integration

Energy- and Emissions-Intensive Industries

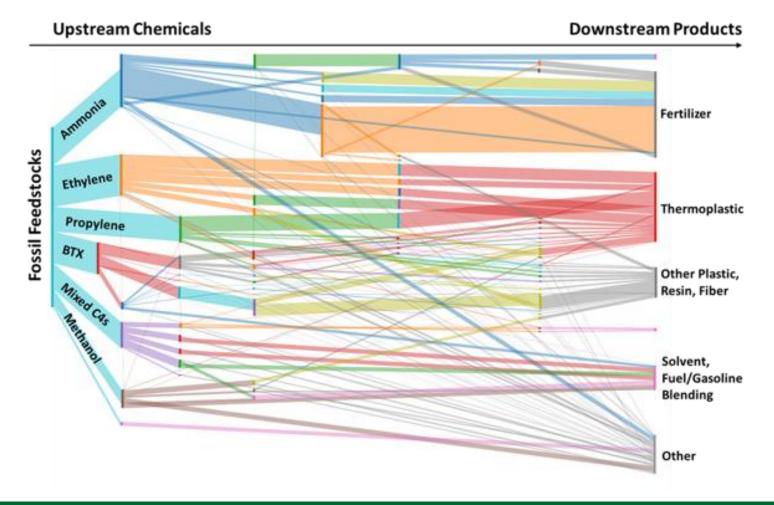
- Chemicals & Fuels
 - Bulk Chemicals, value chains, separations, catalysts, intensification, alternative feeds
 - Clean Fuels & Products Shot
 - RAPID Inst (\$40M/5 yrs)
- Iron & Steel
 - Alt iron processes, recycling, ore beneficiation
- Cement & Concrete
 - Alt binders & process, SCMs, CO2 mineralization
- Food & Beverage
 - Energy recovery, alt processing, waste reduction.
 efficiency, electrification, separations, packaging
- Pulp & Paper, Wood Products
 - Alt pulp chemistry, waste recovery, alt fibers, alt water removal, drying, waste valorization, stranded CO2

Arizona State University to Lead New DOE Institute Focused on Electrifying Process Heat

 The Electrified Processes for Industry without Carbon (EPIXC) Institute is DOE's 7th Clean Energy Manufacturing Innovation Institute.

- EPIXC will:
 - Allocate up to \$70M in federal funding over the next 5 years to fund RD&D projects to electrify process heating.
 - Mobilize a multisector coalition of private companies, National Labs, universities, labor unions, and community partners to create an innovation ecosystem.
 - Bridge the gap between research and commercialization to move novel electrification processes out of the lab and into the market.

National Alliance for Water Innovation


- Energy-water desalination hub led by Lawrence **Berkeley National Laboratory**
- Focused on early-stage research on desalination and water-treatment technologies to secure affordable and energy efficient water supplies from nontraditional water sources
- Goal: 75% reduction in cost and energy of desalination

Chemicals and Fuels Priorities

70,000 Products
70 > 0.5MT/yr CO2
~70% of Emissions from top 6

Chemicals and Fuels Priorities

Crosscutting

- Low-carbon fuels
- Low-carbon & electrified process heating

Waste heat recovery

Carbon capture integration

Sector-Specific

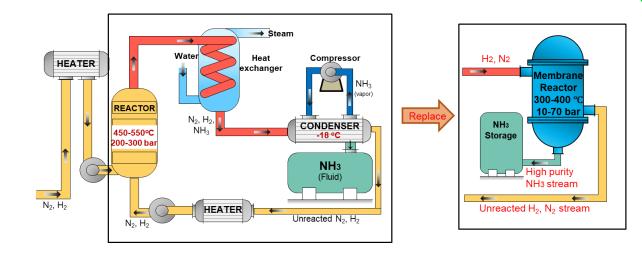
- Sustainable feedstocks (especially carbon)
- Electrochemical reactors
- High-efficiency thermal reactors
- Advanced separations
- Material reuse

Project Awarded to E2H2Nano - Novel Ammonia Synthesis

Background:

- Ammonia global production capacity: ~235 million metric tons in 2019
 - ~2% of the world's energy consumption
 - ~1% of global CO₂ emission
 - Produced using energy-intensive Haber-Bosch process

Innovation:

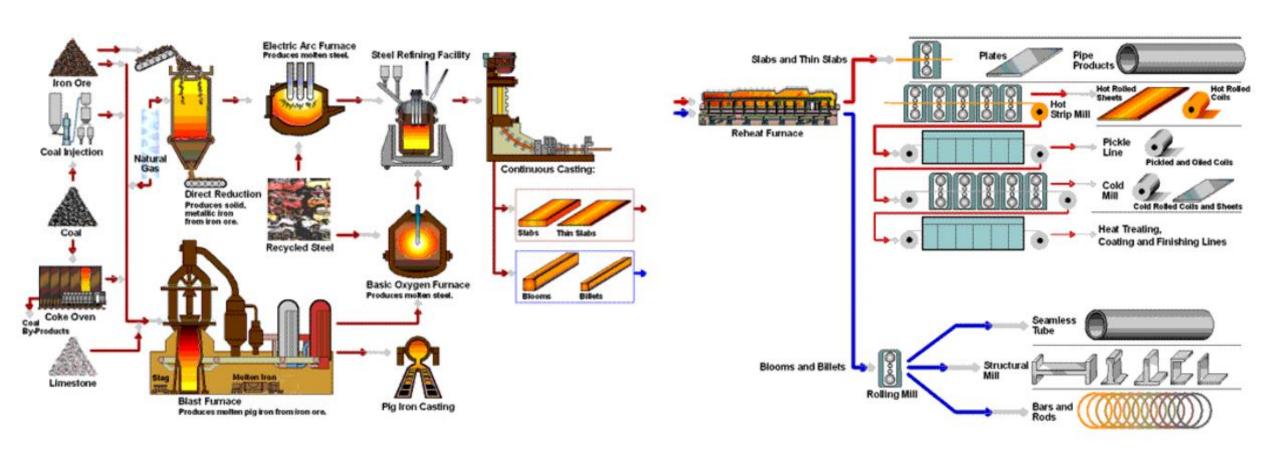

- · Compact catalytic membrane reactor incorporating
 - High activity, low-cost catalyst
 - lower process temperatures and pressures
 - Revolutionary membrane reactor improves efficiency and eliminates need for cryogenic separations

Project Impact:

Energy & Emissions: Reduce >80% energy consumption	Cost & Competitiveness: Reduce > 80% operating cost
Technical & Scientific: >50 % N ₂ conversion in single-pass	Other Impacts: Compact, simplified modular design

End of Project Goal:

0.2 kg/day prototype system



Commercial Process: Haber-Bosch	Proposed Technology: Compact membrane reactor
Operating conditions: 450-550 °C, 200-300 bar	Mild operating conditions: 300-400 °C, 10-70 bar
N_2 conversion: ~15% single pass, large quantity of unreacted gas recycling and reheating	High N ₂ conversion: >50% single pass
Cryogenic condensation: (-18 – -24 °C) for NH ₃ recovery	Cryogenic condensation: eliminated
High cost and energy consumption	Low cost and energy efficient

Iron and Steel Priorities

Iron & Steel Production

Final Steel Shaping & Treating

Iron and Steel Priorities

Crosscutting

 Low-carbon fuels and electrification for process heating, reheats

Waste heat recovery

Sector-Specific

- Alternative iron production
 - Electrolytic (molten, aqueous)
- Alternative reductants
 - H₂, NH₃, Biomass
- Carbon Capture
- Increased recycling (tramp element contamination)

Iron & Steel Decarbonization Projects

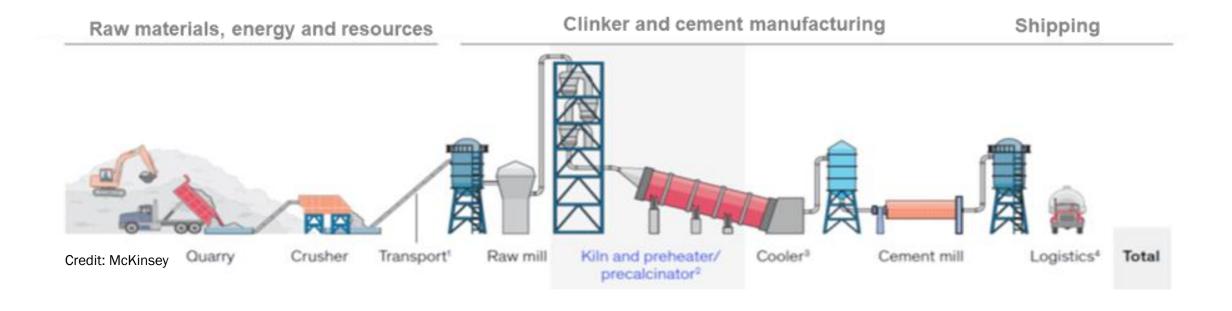
Alternative Iron Production: Molten Sulfide Electrolysis (FY23)

\$5.6M award to Massachusetts Institute of Technology.

- Groundbreaking electrochemical ironmaking using molten sulfide slag.
- Game changer technology, potential to remove copper from molten iron.

Metallic iron (bottom) reduced electrolytically from a molten sulfide slag (top)

Decarbonizing EAF Steelmaking using CO₂ sourced graphite electrodes (FY23)



3 graphite electrodes being lowered into an AC electric arc furnace to strike an arc and make steel.

\$8.9M award to Seerstone Development.

- Development of alternative material to fossil fuel derived needle coke for electrodes.
- Project includes electrode fabrication and production scale test of CO2 sourced electrodes.

Cement and Concrete Priorities

Crosscutting

 Carbon capture from limestone decarbonation

 Electrification & low-carbon fuels

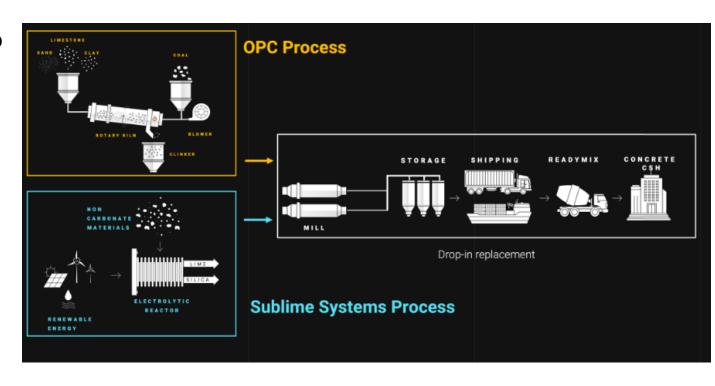
Waste heat recovery

Sector-Specific

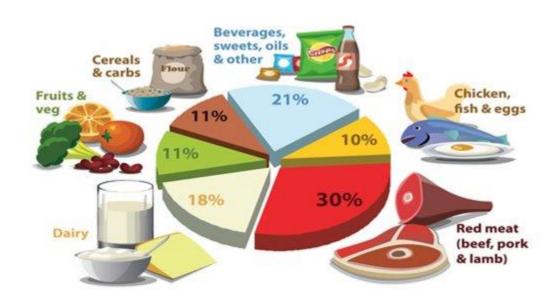
- Alternative binders and process routes to OPC
- Clinker substitutes
- CO₂ mineralization
- Alternative building materials

Cement & Concrete Decarbonization Project

Advanced Electrolytic Cement production W/ alternative calcium sources (FY23)


\$6.7M Federal Awarded to Sublime Systems

Innovation:


- Scale up and Integration of a novel electrolyzer to produce hydraulic cement binder and SCMs
- Use of industrial waste as feedstock for cement production (non-carbonates)
- Low temperature, aqueous process (no kiln)
- Fully electrified process (electrolysis)

Project Impact:

- Reduced energy demand
- Reduced CapEx & OpEx
- Increase in feedstock availability (no limestone)
- Reduced CO2 emissions (~90% vs OPC clinker)

Food and Beverage Priorities

Beer Brewing processing

Food and Beverage Priorities

Crosscutting

 Low-carbon fuels or electrification for steam boilers

- Low-temperature waste heat recovery from process exhausts
- Smart/flexible manufacturing processes

- Drying and dewatering innovations
- Wastewater recovery and reuse

Sector-Specific

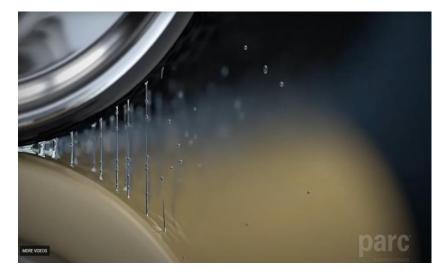
- Alternative protein products
- Food loss reduction & waste management
- Innovative cooling, refrigeration, and freezing solutions
- Drying, cooking, dewatering, and processing innovations

JMMARY

Filament Extension Atomization for High Solids Loading in Energy Efficient Spray Drying Systems

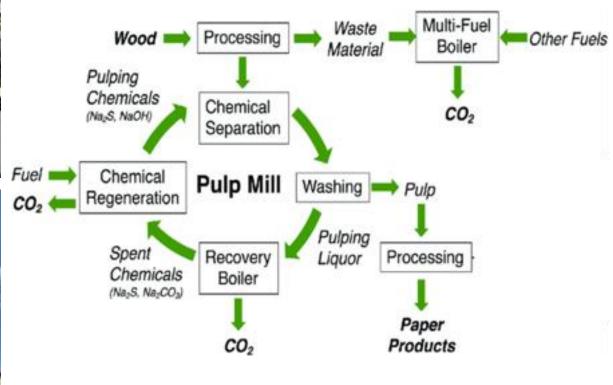
Palo Alto Research Center 2019, 2022

•


- Scale & demonstration industrial spray drying of high concentration whey protein feedstocks to produce high quality whey powder with lower energy input
- Filament Extension Atomization (FEA) tech → enable high solids spray drying
- Decrease dairy spray drying process energy use by 40%

- Scale up process to (7.5L/min)
- Demonstrate in a dairy processing plant environment
- Maintain high product quality standards

- Reduce spray drying energy consumption and production costs by up to 40%
- Increase of solids loading from 50% (state of art) to >70% (FEA-enabled) to achieve 40% energy savings at the spray dryer-level and 15% at system-level
- Additional energy savings from decreased size variability (minimize over-drying)


Forest Products Priorities

Forest Products Priorities

Crosscutting

 Carbon capture integration with boilers

- Low-carbon fuels for lime kilns
- Low-carbon fuels or electrification for steam boilers

 Drying and dewatering innovations

Sector-Specific

- Increase biomass utilization
- Energy efficient separations for concentrating liquor
- Increase fiber yield of pulping
- Increasing solids content in paper forming

Funding Opportunity: FY24 EEII FOA

\$83M for Applied RD&D to Decarbonize Heavy Industry

Date	Milestone
Jan 25	FOA Issue Date
Mar 19	Concept Papers Due
Jun 11,	Full Application Due
Oct '24	Award Announcements

Topic 1: Chemicals & Fuels

- 1. Sustainable feedstocks → chem/fuel
- 2. Non-hydrocarbon products
- 3. Value chain approach

Topic 2: Iron and Steel

- 1. Alternative ironmaking (non-H₂ DRI)
- 2. Ore beneficiation
- 3. Recycling (tramp metal solutions)
- 4. Steelmaking with low-carbon iron

Topic 3: Food and Beverage

- 1. Food packaging
- 2. Commercial food services
- 3. Energy recovery/redistribution
- 4. Post-Harvesting activities

Topic 4: Cement, Asphalt, Glass

- 1. Binders & SCMS → Concrete
- 2. Novel lime/OPC processing
- 3. Asphalt
- 4. Glass

Topic 5: Forest Products

- 1. Dewatering & drying
- 2. Fiber prep, pulping, chemical recovery

Topic 6: Industrial Pre-FEEDs

- H₂ feedstock integration (HFTO)
- 2. Carbon Capture, heavy industry (FECM)
- 3. Process integration (IEDO, FECM, HFTO)

www.energy.gov/eere/iedo/iedo-fy24-energy-and-emissions-intensive-industries-foa

IEDO Technical Assistance & Workforce Development

Public / private partnerships to help manufacturers and industrial organizations set and achieve long-term energy intensity reduction goals

Education and training for the current and future manufacturing workforce

No-cost tools and resources for manufacturers to reduce GHG emissions and improve energy efficiency and competitiveness

End-user support, stakeholder engagement, and technical services for the industrial sector

TA WORK PRODUCTS INCLUDE:

ENERGY ASSESSMENTS

PEER-TO-PEER NETWORKING

TOOLS & TRAINING

TECHNOLOGY SCREENING

PROJECT PROFILES

Key Takeaways

- 1. Targeted RD&D is essential to deliver technology that is:
 - Efficient
 - Sustainable (CO2 and...)
 - Economical
- 2. Silver bullet vs silver buckshot
 - No single approach to decarbonizing industry—a broad, multipath approach is required.
- 3. Both broad and tailored solutions needed
 - Transformative sector specific solutions
 - Integrated cross-sector solutions (thermal, fuels, water...)

IEDO Announcements

1. IEDO is Hiring!

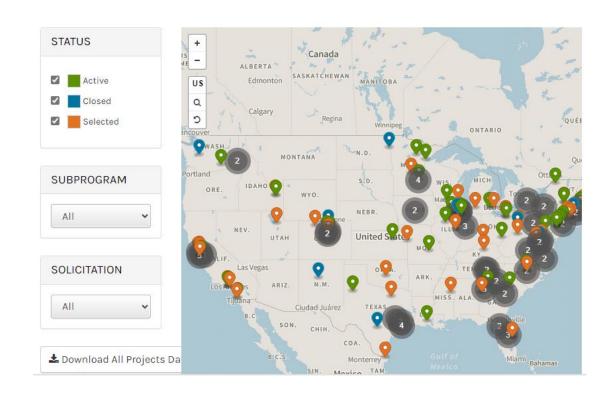
Cross-Sector Technology Manager, Iron & Steel, Cement & Concrete.

Email: IEDOJobs@ee.doe.gov

www.energy.gov/eere/iedo/iedo-careers

- 2. Industrial Decarbonization Pathways Strategy Initiative
 - Led by IEDO (follow on to the Roadmap); broad DOE initiative
 - Workshop planned (seeking participation and engagement)
- 3. Open Funding Opportunity (EEII FY24 FOA)
- FY23 Selections Announced (CST & EEII Projects)

Thank You!


Subscribe to our newsletter "The Production Line" to get the latest information on:

- Announcements
- Funding opportunities
- Events
- Tool and resources
- And more!

IEDO Project Database

www.energy.gov/eere/iedo/iedo-project-database

EXTRA SLIDES

Diversity, Equity, Inclusion, and Accessibility (DEIA) Focus

We seek to create a workforce that reflects the diversity of Americans and ensures that all Americans benefit from a decarbonized industrial sector.

Increasing **Diversity** in Partnerships, Applicant FOA pool, and FOA Reviewers

Using **Inclusive** Language to welcome broader participation in funding opportunities

Identifying **Equity**-related barriers that impact communities

Expanding **Accessibility** for Disadvantaged Communities (DACs), including through community-based stakeholder engagement

IEDO is committed to empowering diverse communities and amplifying best practices for DEIA internally and externally.

DOE Industrial Decarbonization Roadmap

Industrial Decarbonization Pillars

Energy Efficiency

Industrial Electrification

Low-Carbon Fuels, Feedstocks, and Energy Sources (LCFFES)

Carbon Capture, Utilization, and Storage (CCUS)

Decarbonization pillars: inter-related, cross-cutting strategies to pursue in parallel

Chemicals

Food & Beverage

Petroleum Refining

Cement

www.energy.gov/eere/doe-industrial-decarbonization-roadmap

Industrial Efficiency and Decarbonization Office (IEDO)

Energy- and Emissions-Intensive Industries

FY23 = \$131M

Dr. Paul Majsztrik

Cross-sector Technologies

FY23 = \$90.5M

Technical Assistance and Workforce Development

FY23 = \$45M

Anne Hampson

\$266.5 Million FY23 Budget

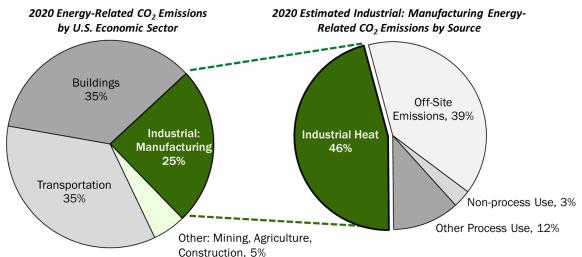
Isaac Chan

Dr. Avi Shultz Director

Joe Cresko **Chief Engineer**

Ava Coy Program Manager **Technical Project Officers**

Anne Hampson Acting Deputy Director



Lauren Hall Operations Supervisor

Mattie Gainer Strategic Communications Lead

11% of U.S. Energy-Related Emissions are from Industrial Thermal Systems

Sources: EIA Annual Energy Outlook (2021); AMO 2018 Manufacturing Energy and Carbon Footprints (2022)

Develop cost competitive industrial heat decarbonization technologies with at least 85% lower greenhouse gas emissions by 2035

>85% Lower Emissions

Goal: Reduce the amount of heat and/or emissions from heat to make cleaner products

4

Generate Heat from Clean Electricity

Reduce Emissions:

electrify equipment & use clean electricity, improve energy efficiency

Examples:

heat pumps, microwave heating, resistive heating, etc.

Integrate Clean Heat from Alternative Sources

Reduce Emissions:

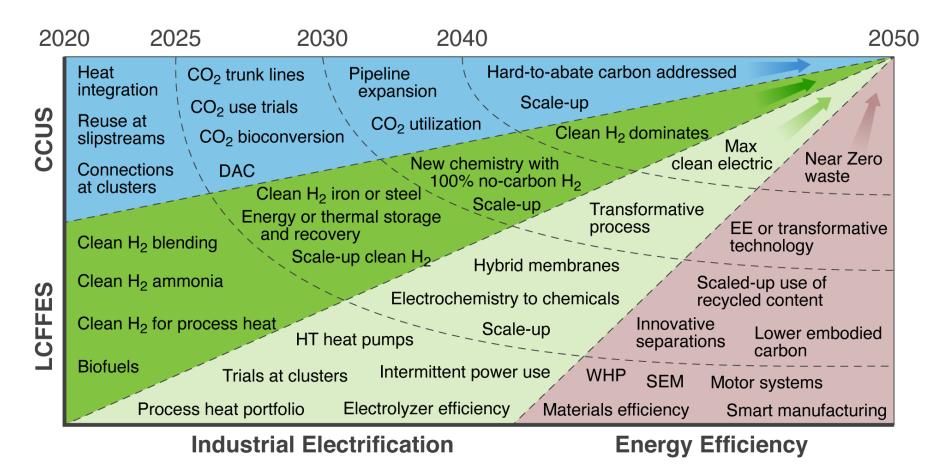
switch to low-emissions heat sources and increase thermal storage

Examples:

solar thermal, nuclear, geothermal, hydrogen, some sustainable fuels, etc.

Innovative Low- or No-Heat Process Technologies

Reduce Emissions:


new chemistry and emerging approaches to reduce heat demand

Examples:

advanced separations, electrolysis, ultraviolet curing, biobased manufacturing, etc.

Enabling technologies and systems: e.g. energy storage, materials, modeling, data analytics, etc.

Landscape of Needed RD&D Investment

Landscape of major RD&D investment opportunities for industrial decarbonization between now and 2050.

LCFFES = Low Cost Fuels, Feedstocks, and Energy Sources; CCUS = Carbon Capture Utilization and Storage

Source: Industrial Decarbonization Roadmap

Rapid Advancement in Process Intensification Deployment (RAPID)

- A 5-year, \$40 million investment to drive RD&D of advanced process technologies to enable more resilient, lower cost, and reduced energy and carbon footprint manufacturing in the process industries.
- Includes the production of chemicals and fuels, which account for more than a third of all U.S. industrial emissions and energy consumption.
- RAPID's work will align with the Clean Fuels & Products Shot.

Clean Fuels & Products Shot

>85% net reduction vs. fossil-based sources

2050 Resource Supply

450 MMT CO₂

...can be converted into...

2050 Projected Hydrocarbon Demand

>400 MMT* fuels and chemicals

*This Shot assumes that 50% of marine, rail, off-road, hydrocarbon chemicals and 100% of aviation demand will be met by hydrocarbon fuels in 2050.