CO₂ Capture using RTI's Non-Aqueous Solvents

2024 Industrial Processes Emissions Reduction (IPER) Technology Workshop

Vijay Gupta

Delivering the promise of science for global good

RTI International is an independent, nonprofit research institute dedicated to improving the human condition. We combine scientific rigor and technical expertise in social and laboratory sciences, engineering, and international development to deliver solutions to the critical needs of clients worldwide.

RTI Overview

RTI's Global Presence

\$1.194B

3,916 Projects

1,156 Clients

6,022 _{Staff}

Practice Areas

Multidisciplinary expertise and research insights our clients need to inform policy, practice, and programs

Health Education and workforce development International development Energy research Environmental sciences Social and justice policy Food security and agriculture

Innovation ecosystems

Non-aqueous Solvents: R&D Strategic Approach

Breakdown of the Thermal Regeneration Energy Load

For NAS, heat of vaporization of water becomes a negligible term to the heat duty

Sensible heat term is decreased due to lower heat capacity, higher loadings, and higher amine concentration relative to baseline

Path to Reducing ICOE and Cost of CO₂ Avoided

- Primarily focus on reducing energy consumption – reboiler duty
- Reduce capital expenditure
 - Simplify process arrangement
 - Materials of construction
- Limit operating cost increase

Technology Overview – NAS Technology Development Path

Large Bench-Scale

Lab-Scale Development & Evaluation (2010-2013)

Solvent screening and lab-scale evaluation

0.0015 t-CO₂/day *TRL 1-3*

System (RTI facility)

(2014-2016)

Demonstration of key

Pilot Testing at Tiller Plant Norway,

(2015-2018)

Demonstration of all process components at pilot scale

1.0 t-CO₂/day *TRL 4-5*

Degradation.

emission, corrosion

characterizations

under real flue gas

1.0 t-CO₂/day

TRL 4-5

RTI Emissions Control

(2018-2021)

Effective emissions mitigation strategy for water-lean solvents

TRL 3-4

1.1 t-CO₂/day

Engineering-Scale Validation, TCM, Norway (2018-2023)

Pre-commercial demonstration at TCM, Norway (~12 MWe)

220 t-CO₂/day

NAS Demonstration at TCM

- ✓ Performed >2,800 hours testing of NAS at coal and NGCC flue gas conditions
- ✓ Demonstrated NAS operations at TCM below emission limits
- ✓ Achieved SRD of 2.6 GJ/t-CO₂ captured at coal flue gas conditions with sub-optimal TCM absorber configuration (only one intercooler)
- ✓ Demonstrated NAS with CO₂ regeneration at 4.4 bar with minimal increase in SRD
- ✓ Demonstrated high efficiency CO₂ capture from NGCC with NAS, though at higher SRD and cost

DE-FE0032220 : Carbon Capture Plant FEED Study for Cement Manufacturing

Objective:

- Complete FEED study for CO₂ capture from cement flue gas using RTI's non-aqueous solvent (NAS) with 95% capture efficiency
- Develop AACE Class 3 cost estimate for a commercial 1,600,000 t-CO₂/year scale CO₂ capture system integrated with a cement facility
- Period of Performance (21 months) April 14, 2023 – Jan 13, 2025

Pilot Scale Capabilities (BsGAS)

<u>Absorber</u>

3" Sch. 10 SS316 (8.5 m) Mellapak 350X Temp: 30-55° C Pressure: Up to 200 kPa

Regenerator

3" Sch. 10 SS316 (7.1 m) Mellapak 350x Temp :Up to 150°C Pressure: Up to 1MPa

Simulated Flue Gas Properties

FG Flow Rate:	100 to 485 SLPM (Gas vel 0.33 – 2.5 m/s)
Solvent flowrate	15 – 75 kg/h
CO ₂ Feed Rate:	1.8 to 8.6 kg/h
Feed Temp.:	30 to 50°C
CO ₂ Content:	up to 20 %vol
Water Content:	~0 to 12.3%vol

- Smallest sized continuous flow system that can provide realistic estimates for reboiler duty.
- BsGAS estimates compare well with data from SINTEF Tiller and TCM demonstrations.

10 kW ~185 kg CO_2 /day

Process Intensification for lower CAPEX

Energy Efficiency & Renewable Energy

DE-EE0009415 : Intensified Water-Lean Solvent CO₂ Capture System for Cement Flue Gas

Goal: Develop a highly efficient and costeffective CO_2 capture process for a cement plant

Objectives:

- Develop, optimize, and scale up the process intensification (PI) absorber technologies with non-aqueous solvent (NAS)
- Resolve integration challenges of the low-cost, modular, PI CO₂ capture technology with a cement plant
- Evaluate cost and technical integration of the captured CO₂ into concrete products
- POP: Jul 01, 2021 Mar 31, 2025

Mojonni

FLExible Carbon Capture and Storage (FLECCS)

NAS Technology Licensor

Schlumberger and RTI International Partner to Accelerate the Industrialization of Innovative Carbon Capture Technology

Non-aqueous solvent technology drives carbon capture cost reductions across hard-to-abate industries

October 17, 2022 07:00 AM Eastern Daylight Time

HOUSTON--(BUSINESS WIRE)--Schlumberger announced today that it has entered into an agreement with RTI International, a nonprofit research institute, to accelerate the industrialization and scale-up of its proprietary non-aqueous solvent (NAS) technology, which enhances the efficiency of absorption-based carbon capture. The NAS technology will be applicable to capture CO₂ across a broad variety of industrial emissions.

"With the world's carbon budget running out, reducing emissions is a societal imperative"

🔰 Tweet this

"With the world's carbon budget running out, reducing emissions is a societal imperative," said Gavin Rennick, president of Schlumberger's New Energy business. "Carbon capture technologies are a key enabler in realizing a low carbon future—and we are excited about this exclusive agreement to work with RTI on industrializing and scaling this innovative carbon absorption technology, and bringing it to market."

Schlumberger

SCHLUMBERGER

- Headquarters: Paris, Houston, London, and The Hague, ..
- Website: www.slb.com
- CEO: Olivier Le Peuch
- Employees: 96,000
- Organization: PUB
- Revenues: 22.9 Billion (2021)
- Net Income: 1.9 Billion (2021)

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Thank you

Contact: Vijay Gupta email: vgupta@rti.org