Air-Sourced High Temperature Heat Pump for Decarbonization of Industrial Process Steam

ATMOSZERO

Wale Odukomaiya, Ph.D. Advanced Concepts Team Lead Principal Simulation Engineer

wale@atmoszero.energy

Presentation Goals

High-Level AtmosZero Overview
Why an Air-Sourced High Temperature Heat Pump?

AtmosZero High-Level Intro

The power of steam

Steam accounts for:

of process heat used in industry 8%

of global primary energy use **2.25** GT GHG emissions per year

Steam drove the industrial revolution. AtmosZero will drive the next.

The sweet spot: Steam temperatures

50% of all process heat is delivered by steam.

Redefining boiler room efficiency

2.0X more efficient than today's electric boilers and emissions free

Introducing: Boiler 2.0

Modular Air-Sourced Steam Heat Pump No waste heat required Product...not a Project

New technology delivers zero-carbon steam, making net zero goals technologically and economically achievable

First Customer

PHASE 1 – The Pilot Meet 1/3 of steam demand

- Replace one natural gas boiler in Fort Collins facility
- 165°C, 2200 lb/hour saturated steam
- In-field, in-revenue service. Q1'25.

PHASE 2 - Full deployment Go all-in and grow

- Full replacement in Fort Collins
- Expand to other brewery locations in VA, MI, and NC

NEW BELGIUM BREWING

Ready to Scale for Global Impact

Prototyped Modular product

650 kW_{th} building blocks delivering up to 200°C

World-class research

Colorado State University partnership

Key supply chain partnership

JDA with key global supplier Danfoss

Established global presence

EU subsidiary in the Netherlands

1° Danfoss

Colorado State University

Technoeconomics of decarbonized electrified steam boiler technologies

Introduction – Steam Generation

Fuel Boiler

State-of-the-art, requires combusting fuel such as natural gas

Waste Heat Driven Heat Pump

High efficiency, requires site specific engineering for facility integration

Electric Boiler

Commercially available and low-CAPEX, efficiencies <100%

Air-Sourced Heat Pump

Lowered efficiency, reduced integration challenges

Heat Pump System Configurations

Sourced (≤45°C) Steam Generating Heat Pump

Sourced (≥60°C) Steam Generating Heat Pump

Waste Heat Recovery is Good, Right?

* COP values assume 60% of Carnot COP and a steam delivery temperature of 150°C

F

Invisible Costs

* All costs shown are for a 1MW steam capacity installation

F

Invisible Costs

* All costs shown are for a 1MW steam capacity installation

Invisible Costs

 \ast All costs shown are for a 1MW steam capacity installation

F

Invisible Costs

* All costs shown are for a 1MW steam capacity installation

Simple Incremental Payback Period

* All costs shown are for a 1MW steam capacity installation

** Revenue lost (upper bound) assumes \$100M per annum facility and 5 days of lost revenue for the installation period. Lower bound assumes no facility downtime.

Wale Odukomaiya, Ph.D. Advanced Concepts Team Lead | Principal Simulation Engineer

Thank You!

www.AtmosZero.energy | wale@atmoszero.energy

